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Abstract

This paper describes a method for articulated 3D upper body tracking in
monocular scenes using a graphical model to represent an articulated body
structure. Belief propagation on factor graphs is used to compute the margi-
nal probabilities of limbs. The body model is a loose-limbed model including
attraction factors between adjacent limbs and constraints to reject poses re-
sulting in collisions. To solve ambiguities resulting from monocular view,
robust contour and colour based cues are extracted from the images. More-
over, a set of constraints on the model articulations is implemented according
to human pose capabilities. Quantitative and qualitative results illustrate the
efficiency of the proposed algorithm.

Figure 1: Upper body tracking. First row: original image, front, right side and top views
of the obtained limbs positions with a single camera. Second row: background subtrac-
tion, contours, face colour map and energy motion distance map.

1 Introduction
Algorithms for body tracking must cope with a high dimensional space in which the
joint probability function is highly multimodal and sharp. In this context, deterministic



Figure 2: Limbs interactions (Left): nodes correspond to limbs, articulation constraints
are represented by solid lines and dashed lines are additional non-collision constraints
between head and hands. Upper body model (Right): arms and forearms are modeled by
cylinders and the head by a sphere. Other limbs (hands torso and clavicles) are represented
by 2D patches. Limb interaction factors are computed with the distances (Dn,Ds,De,Dw)
between them. Other joints constraints are determined by the angles θh, θc and θ t. The
neck is located at equal distance from both clavicles.

methods can track in real time with stereo cameras [5], but may fail for monocular view
because of the many local optimums owing to ambiguities in monocular scenes [13].

Due to articulation constraints, consistent poses are bounded in a smaller subspace
making learning based tracking methods efficient if their learning set sufficiently covers
this subspace. Various regressions methods, aiming at deducing a pose directly from an
image, have been tested on walking sequences with constrained environments [2]. Non
negative matrix factorisation [1] can enhance such methods by rejecting non discrimina-
tive data. Other methods like GPDM [15] introduce probabilities in the computation of a
latent space to smooth the resulting pose, but test scenes are restricted to cyclic motions.
Other methods that perform a comparison between an image and a learning base require
a huge database even when robust locally-weighted regression between candidates poses
is used [10]. Increasing the data base may slow down drastically the comparison process
and, to speed up the selection of a subset of nearest neighbours, the comparison process
can use locally sensitive hashing and Hamming distance [14]. The likelihood of a body
pose is computed with this previous method using a Bayesian framework but some poses
that are dissimilar to the learned ones are not correctly estimated and generally, the huge
pose space and the variability in external parameters such as clothing or hairstyle is the
major cause of failure in learning based methods.

Stochastic algorithms are useful in monocular vision to resolve ambiguities resulting
from 2D to 3D pose inference, particularly when a multi-hypothesis algorithm, such as
particle filtering [4], is used. The main drawback with such methods is the high dimen-
sional pose space. A way to avoid this problem consists in using a loose-limbed body
model [11] where the likelihood of each limb is evaluated independently. In this manner,
a particle filter can be associated with each limb reducing the search space dimension
to the number of dof of a limb [3]. Influence between limbs is taken into account by
propagating limb beliefs through a factor graph using belief propagation [8]. A similar



Figure 3: Factor graph. Circles corresponds to variable nodes (limb states) and black
squares to factor nodes (temporal coherence T µ and interaction or non-collision factors
ψµν ). For clarity, only two consecutive frames with two temporal factor links are shown
and the factor nodes corresponding to the observations Y µ are omitted.

technique is used in monocular scenes [7] with only motion energy as cue.
In this paper, the number of cues is increased to enhance the robustness of the tracking.

Moreover, the use of interacting particle filters with belief propagation [3] simplify our
algorithm by computing recursively an estimation in a discrete space instead of using, for
example, a Gibbs sampler in a continuous one [11]. More general articulation constraints
rules are built in the compatibility factors computation instead of learning them from
specific walking sequences with a mixture of Gaussians [11]. The proposed algorithm
performs at six fps using a standard webcam.

2 Recursive Bayesian tracking
The upper body is modeled as a graph including M limbs represented by nodes and links
corresponding to articulations or non collision constraints between limbs (figure 2). Ba-
sically, a Markov network can be used to represent this structure but the non-collision
constraints between the head and the hands generate a three nodes clique. A factor graph
is constructed to simplify the model by using only pairwise factors [3]. The joint proba-
bility can be decomposed as a products of these factors. The complete graph includes the
previous states to take into account the temporal coherence (figure 3). Given a limb µ ,
its state X µ

t at time t and the image observations Y µ

t , the model parameters are the obser-
vations compatibility factors φ µ(X µ ,Y µ), the time interaction factors T µ(X µ

t ,X µ

t−1), and
the interaction factor for the link between limbs µ and ν : ψµν(X µ ,Xν). Adopting these
notations, the joint probability knowing all observations from time 0 to T is:



Figure 4: Articulations constraints. Arm and forearm: dashed lines show limb forbidden
areas. The angular constraints are |θc| ≤ 15◦ for clavicles and |θh| ≤ 25◦ for head.

P(X0:T |Y0:T ) =
T

∏
t=0

Φ(Xt ,Yt)Ψ(Xt)
T

∏
t=1

T (Xt ,Xt−1) , (1)

with:

• Φ(Xt ,Yt) = ∏
M
µ=1 φ µ(X µ

t ,Y µ

t ),

• Ψ(Xt) = ∏(µ,ν)∈Γ ψµν(X µ

t ,Xν
t ), where Γ is the set of links,

• T (Xt ,Xt−1) = ∏
M
µ=1 T µ(X µ

t ,X µ

t−1).

The marginal probabilities of the limbs’ state are obtained using the belief propagation
algorithm on a factor graph [3]. As the graph includes cycles, the obtained marginal is
an approximation of the true one. This approximation further depends on the messages
update order. To simplify the algorithm, the messages are propagated to all nodes within
the current frame for a fixed number of iterations (10 in our case) and then propagated
only once from a frame to the following one. Therefore, the estimation of a marginal
at any time t does not depend on the observations after time t, and the estimation of the
marginals can be computed recursively.

The messages are represented by sets of weighted samples. From one frame to the
next, they are calculated using a particle filter scheme consisting in a re-sampling step
followed by a prediction step based on the time coherence factors [4]. The loopy belief
propagation algorithm is then reduced, for the current frame, to a loopy propagation algo-
rithm for discrete state spaces, the space state for each limb being restricted to its samples.
Moreover the marginal probability is then simply represented as a weighted sum of the
same samples. In this manner, a full recursive estimation is obtained. The algorithm is
equivalent to a set of interacting particle filters, where the sample weights are re-evaluated
at each frame through belief propagation to take into account the links between limbs.
This algorithm is relatively fast because for a frame t, as opposed to [11], the image based
compatibility factors φ µ(X µ

t ,Y µ

t ) have to be evaluated only once for each sample, and the
link interaction factors only once for each pair of samples for all connected limbs.



3 Application to monocular upper body tracking
The model is applied to articulated upper-body tracking using monocular colour images
from a webcam. Head and hands are tracked using image colour information and grey
levels are used to compute cues: background subtraction, motion energy and orientation
contour map (figure 1).

3.1 Initialisation
An accurate face detector [6] is used to detect the face in the colour image. Once detected,
a starting pose corresponding to the arms along the body with the torso vertical and facing
the camera is supposed. The tracker can easily recover the real pose as long as it is not
too far from this hypothesis. The detected face is also used to initialise a face colour
histogram.

3.2 Body model and link interaction factors
Figure 2 shows the body model. 3D limbs are represented by a sphere for the head and
cylinders for arms and forearms. Hands, clavicles and torso are represented by 2D patches
using respectively circles, triangles, and a rectangle. Limbs are discretized using a grid
of regularly distributed points around them. A Gaussian of the distance between two link
points is used to compute the link interaction factors (see figure 2 for distances Dn, Ds, De
and Dw). This Gaussian is zero centred for the shoulder-arm and arm-forearm joints, and
on a reference distance for the head-neck and forearm-hand joints. Other constraints are
added giving zero factor for angles θh , θc above a fixed threshold depending on the torso
tilt θ t (figure 4). Three additional links are defined, which simply give a zero probability
to solutions where hands and head intersect (non collision constraints).

3.3 Time coherence factor
The time coherence factors T µ(X µ

t ,X µ

t−1) are simple Gaussian, independent for each pa-
rameter, centred on the value in the previous frame. For hands, which can move fast and
rapidly change speed, the time coherence factors is a mixture of two similar Gaussian, one
centred on the previous parameter and the other centred on the prediction of the current
parameter using previous hand speed. The standard deviation is chosen to be 10 cm for
hands positions, and 5 cm for other limb positions. For angles, the standard deviation is
set to π/8.

4 Image features
The image compatibility factors φ µ(X µ

t ,Y µ

t ) are computed from scores Sµ

f representing
the compatibility between a limb hypothesis µ and cues f extracted from the image.
Contrary to stereo [3], monocular images needs more cues to reach a sufficient level of
robustness. Thus, multicues image based compatibility terms are fused to provide an
overall score: Sµ = ∏ f Sµ

f . To avoid taking into account background distractors, a robust
background subtraction [9] is used.



Figure 5: Finding the torso. The bottom grid points (black pixels) representing the pelvis
moves horizontally in order to maximise the correspondence between the points and the
positive background subtraction pixels (white pixels). The maximum energy is reached
when the grid is centred on the bottom positive background subtraction zone. The top of
the torso is located at equal distance between the two clavicles.

4.1 Face and hands tracking
Considering the head position detected during initialisation step (§ 3.1), a colour model
is provided by computing a normalised colour histogram of the head. The points p be-
longing to the head or the hands are compared with this model by computing the colour
score:

Sµ
c = ∑

(p∈µ)
H(p) (2)

The function H(p) returns the histogram bin value corresponding to the pixel p colour.

4.2 Torso tracking
The torso is hard to detect because of clothes deformations or occlusions produced when
a person moves. The pelvis position can be found using a rectangular grid of weighted
points p interacting with a background subtraction to slide on the bottom of the image
(figure 5). The torso score is:

St = ∑
(p∈t)

W (p)Bg(p) (3)

Where W (p) is the weight of p corresponding to the Gaussian distance between p and the
grid center. Bg(p) returns the probability that pixel p belongs to the foreground according
to a background subtraction [9]. The upper torso point corresponds to the neck located at
half distance of the two clavicles.

4.3 Arms, forearms and clavicles tracking
Arms tends to move rapidly and are subject to many partial occlusions. Thus, to reach
a sufficient level of robustness, a fusion of a contour based cue and motion energy is
implemented. An accurate contour based score can be estimated by not only considering
the contours magnitude but also their orientations. Given M(‖−→p ‖) = 1

λ
‖−→p ‖tanh( λ

‖−→p ‖
),

a function that penalise low and high magnitude contour points ‖−→p ‖ with λ a tuning
parameter, a score Sµ

or for a limb hypothesis µ is computed by considering the Gaussian



Figure 6: Quantitative results. For each joint, the error corresponds to the distance be-
tween estimated and true joint positions. As [12, 14], the mean error made on estimating
the three joints is computed to provide the overall joint mean error.

difference Gθ (.) between the limb orientation θlimb and each pixel contour orientation θp
that corresponds to projected limb points p onto the image plane:

Sµ
or = ∑

p∈µ

M(‖−→p ‖)Gθ [θlimb−θp] (4)

The motion energy score is computed considering the Gaussian distance G(d(p)) be-
tween each projected limb point p and the nearest pixel where a motion has been detected:
Sµ

m = ∑(p∈µ) G(d(p)). Motion detection is provided by adjacent frame difference. How-
ever, only the contour score is used for clavicles because they are strongly constrained by
head position during belief propagation.

5 Experimental results
The system was tested on sequences grabbed with a standard webcam. Quantitative re-
sults were obtained comparing the estimated pose with a ground truth provided by a
magnetic motion sensor. The true joint positions are measured for the right arm joints
(shoulder, elbow and hand). The test sequence includes full 3D movements with limb
occlusions and cluttered background (figure 9). Instead of only computing the overall
limb mean error [12, 14], our results are complemented by the estimation error for each
limb (figure 6). Qualitative results are shown on figure 7 where various user on different
backgrounds and clothes are successfully tested.



Figure 7: Monocular 3D tracking. Challenging poses are shown including occlusions,
cluttered background and unconstrained environment (lighting and clothes).

Error (cm) Shoulder Elbow Wrist Overall Mean Error
Mean 1.7 7.1 9.7 6.1
Max 6.1 24.1 31.0 13.4

Std. Dev. 1.0 3.5 6.6 2.6
Average Speed (cm.s−1) 2.83 4.28 8.5

Table 1: Mean, maximum and standard deviation of the estimated position error for shoul-
der, elbow and wrist. Overall mean error is the mean error made on estimating the pose of
theses three joints. Average speed is computed for the whole test sequence on each joint.

In monocular tracking, significant errors are usually made on depth estimation. It is
the case in the test sequence around frame 500 owing to a wrong estimated elbow position
that constrains the wrist in an exaggerated forward position. A similar problem occurs
around frame 850 where forearm bends perpendicularly to the image plane and wrist
depth is wrongly estimated by our algorithm (figure 8). Anyway, the maximal estimated
pose error stays below 31 cm and below 15 cm considering the measure protocol used in
[12, 14] (table 1). The comparison with other tracking algorithms is a difficult task owing
to the disparity between used test sequences. However, the obtained results outperform or
are as accurate than those computed with existing algorithms [12, 14].

6 Conclusion
We have presented an algorithm for monocular upper body tracking performing at 6 fps
using a standard webcam with unconstrained environments (lighting and clothes). The
used cues based on contours provide sufficient robustness to succeed on unconstrained
environments. Belief propagation provides a judicious solution in order to reduce the



Figure 8: Examples of wrong depth estimation on frames 581 (first row) and 850 (second
row). In both cases, right forearm is not bended sufficiently involving errors larger than
25 cm on wrist pose estimation.

space dimension of the generated hypothesises making particle filtering framework suit-
able. Articulation constraints are easily integrated into factors computation to provide
consistent resulting poses. Future work will include a learning based image compatibility
term to handle occlusions and more accurate depth estimation.
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